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6.1 Let (M, g) be a smooth Lorentzian manifold. We will de�ne the Riemann curvature tensor

R : Γ(M)× Γ(M)× Γ(M) → Γ(M) by

R(X, Y )Z
.
= ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

(a) Show that R is indeed a (1, 3)-tensor �eld which is antisymmetric in its �rst two arguments.

Let V be a Killing vector �eld on (M, g) and γ : (a, b) → M a geodesic for g.

(b) Prove that, for any vector �eld Z along γ:

g
(
∇γ̇∇γ̇V, Z

)
+ g

(
R(γ̇, Z)V, γ̇)

)
= 0.

Deduce that the components of V k of V in any local coordinate system around a given
point on γ satisfy a second order linear ODE along γ.

(c) Show that if V |p = 0 and ∇V |p = 0 for some p ∈ M, then V = 0 on the whole connected
component of M containing p.

(d) What is the maximum dimension of the Lie algebra of Killing �elds on a connected
Lorentzian manifold of dimension n + 1? Compare it with the dimension of the Killing
algebra on Minkowski spacetime.

6.2 (a) Let (M, g) be a smooth Lorentzian manifold and let V be a Killing vector �eld on (M, g).
Show that for any geodesic γ : I → M, the inner product g(γ̇, V ) is constant along V .

*(b) Let M = R×M̄ be a product manifold equipped with a Lorentzian metric g of the form

g = −f · dt⊗ dt+ dt⊗ ω + ω ⊗ dt+ ḡ,

where

◦ t : M = R× M̄ → R is the projection on the �rst factor.

◦ f, h are smooth functions on M̄.

◦ ω is an 1-form on M̄.

◦ ḡ is a Riemannian metric on M̄.

Let E ⊂ M̄ be the set where f < 0. Show that, for every p ∈ R × E, there exists a
maximally extended null geodesic γ : (a, b) → M for g with γ(0) = p which does not
escape R× E (i.e. γ(s) ∈ R× E for all s ∈ (a, b).

6.3 Consider the manifold M = R× R equipped with the Lorentzian metric

gAdS = −(1 + r2)dt2 +
1

1 + r2
dr2

(this is known as the 1+1 dimensional Anti-de Sitter metric). Note that (M, g) can be thought
of as the universal Lorentzian cover of the (topological) cylinder S = {−x2 − y2 + r2 = +1} in
the pseudo-Euclidean space (R2+1, η(2,1)), where η(2,1) = −dx2 − dy2 + dr2.
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(a) Show that (M, gAdS) is timelike geodesically complete, i.e. that all timelike geodesics of
gAdS can be extended on the whole of R.

(b) Show that all timelike geodesics γ passing through (t, r) = (0, 0) also pass through (t, r) =
(kπ, 0), k ∈ Z. Show that there exists a point p ∈ I+[(0, 0)] such that (0, 0) and p cannot
be connected with a timelike geodesic.

6.4 Let (M, g) be a smooth Lorentzian manifold and let S ⊂ M be a smooth null hypersurface.
Let L be a non-zero vector �eld along S such that, for every p ∈ S, L|p ⊥ TpS.

(a) Show that L is tangent to S (i.e. L|p ∈ TpS for all p ∈ S).

(b) Show that, for any two vector �elds X, Y tangent to S, we have

g
(
∇XL, Y

)
= g

(
∇YL,X

)
.

(Hint: You might want to use the fact that, if V,W are two vector �elds tangent to a

submanifold N ⊂ M, then [V,W ] is also tangent to N .)

(c) Using the above formula, show that ∇LL|p ⊥ TpS for all p ∈ S. Show that

∇LL = κL for some κ : S → R.

Deduce that the integral curves of L in S are (up to reparametrization) null geodesics.
Infer that any null hypersurface of (R1+n, η) is a union of null lines.

(d) Assume, in addition, that there exists a Killing vector �eld V on (M, g) such that V
is collinear with L along S (such a null hypersurface is called a Killing horizon). By
replacing L with V in the above arguments, we infer that

∇V V |S = κV |S.

Show that the function κ above is a constant along the null generators of S, i.e. V (κ) = 0.
This is the surface gravity of the Killing horizon.

(e) Show that the hyperplane H = {x = t} in (R3+1, η) (with the usual Cartesian coordinate
system (t, x, y, z)) is a Killing horizon (and �nd the corresponding Killing vector �eld of
(R3+1, η). Can you compute its surface gravity?
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