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General Relativity 16 Oct. 2024

6.1 Let (M, g) be a smooth Lorentzian manifold. We will define the Riemann curvature tensor

R:T(M) x T(M) x T(M) — T(M) by

(a)

R(X,Y)Z = VxVyZ - VyVxZ — VixyZ.

Show that R is indeed a (1, 3)-tensor field which is antisymmetric in its first two arguments.

Let V be a Killing vector field on (M, g) and 7 : (a,b) — M a geodesic for g.

(b)

Prove that, for any vector field Z along ~:
9(V5VsV. Z) + g(R(3, Z)V,7)) = 0.
Deduce that the components of V* of V in any local coordinate system around a given

point on v satisfy a second order linear ODE along ~.

Show that if V|, = 0 and VV|, = 0 for some p € M, then V = 0 on the whole connected
component of M containing p.

What is the maximum dimension of the Lie algebra of Killing fields on a connected
Lorentzian manifold of dimension n 4+ 17 Compare it with the dimension of the Killing
algebra on Minkowski spacetime.

Let (M, g) be a smooth Lorentzian manifold and let V' be a Killing vector field on (M, g).
Show that for any geodesic v : I — M, the inner product g(¥, V') is constant along V.

Let M =R x M be a product manifold equipped with a Lorentzian metric g of the form
g=—f - dt@dt+dtQw+wdt + g,

where

ot: M=RxM — Ris the projection on the first factor.
f, h are smooth functions on M.

e}

o wis an 1-form on M.
o g is a Riemannian metric on M.
Let & C M be the set where f < 0. Show that, for every p € R x &, there exists a

maximally extended null geodesic v : (a,b) — M for g with v(0) = p which does not
escape R x € (i.e. v(s) € R x € for all s € (a,b).

6.3 Consider the manifold M = R x R equipped with the Lorentzian metric

dr?

1
= —(1+7r%)dt®
JAds (1+7°) +1+2

(this is known as the 1+ 1 dimensional Anti-de Sitter metric). Note that (M, g) can be thought
of as the universal Lorentzian cover of the (topological) cylinder S = {—2% — y?> +7? = +1} in
the pseudo-Euclidean space (R**!,n.1)), where 1,1y = —da® — dy? + dr®.
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(a) Show that (M, gaus) is timelike geodesically complete, i.e. that all timelike geodesics of
gags can be extended on the whole of R.

(b) Show that all timelike geodesics y passing through (¢,7) = (0, 0) also pass through (¢,r) =
(km,0), k € Z. Show that there exists a point p € Z*[(0,0)] such that (0,0) and p cannot
be connected with a timelike geodesic.

6.4 Let (M, g) be a smooth Lorentzian manifold and let S C M be a smooth null hypersurface.
Let L be a non-zero vector field along S such that, for every p € S, L|, L T,S.
(a) Show that L is tangent to S (i.e. L|, € T,S for all p € 5).
(b) Show that, for any two vector fields X, Y tangent to S, we have

9(VxL,Y) =g(VyL,X).
(Hint: You might want to use the fact that, if V,W are two vector fields tangent to a

submanifold N C M, then [V, W] is also tangent to N.)
(c) Using the above formula, show that VL[, L T,S for all p € S. Show that

ViL =kL forsomex:S5S— R

Deduce that the integral curves of L in S are (up to reparametrization) null geodesics.
Infer that any null hypersurface of (R**",7) is a union of null lines.

(d) Assume, in addition, that there exists a Killing vector field V' on (M, g) such that V
is collinear with L along S (such a null hypersurface is called a Killing horizon). By
replacing L with V' in the above arguments, we infer that

VVV’S = HV|S.

Show that the function x above is a constant along the null generators of S, i.e. V (k) = 0.
This is the surface gravity of the Killing horizon.

(e) Show that the hyperplane H = {z =t} in (R*"! n) (with the usual Cartesian coordinate
system (t,x,y,z)) is a Killing horizon (and find the corresponding Killing vector field of
(R3*1 n). Can you compute its surface gravity?
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