Differential Geometry IV: General Relativity

G. Moschidis16 Oct. 2024

6.1 Let (\mathcal{M}, g) be a smooth Lorentzian manifold. We will define the *Riemann curvature tensor* $R: \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ by

$$R(X,Y)Z \doteq \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

(a) Show that R is indeed a (1,3)-tensor field which is antisymmetric in its first two arguments.

Let V be a Killing vector field on (\mathcal{M}, g) and $\gamma : (a, b) \to \mathcal{M}$ a geodesic for g.

(b) Prove that, for any vector field Z along γ :

$$g(\nabla_{\dot{\gamma}}\nabla_{\dot{\gamma}}V, Z) + g(R(\dot{\gamma}, Z)V, \dot{\gamma})) = 0.$$

Deduce that the components of V^k of V in any local coordinate system around a given point on γ satisfy a second order linear ODE along γ .

- (c) Show that if $V|_p = 0$ and $\nabla V|_p = 0$ for some $p \in \mathcal{M}$, then V = 0 on the whole connected component of \mathcal{M} containing p.
- (d) What is the maximum dimension of the Lie algebra of Killing fields on a connected Lorentzian manifold of dimension n + 1? Compare it with the dimension of the Killing algebra on Minkowski spacetime.
- 6.2 (a) Let (\mathcal{M}, g) be a smooth Lorentzian manifold and let V be a Killing vector field on (\mathcal{M}, g) . Show that for any geodesic $\gamma: I \to \mathcal{M}$, the inner product $g(\dot{\gamma}, V)$ is constant along V.
 - *(b) Let $\mathcal{M} = \mathbb{R} \times \overline{\mathcal{M}}$ be a product manifold equipped with a Lorentzian metric g of the form

$$g = -f \cdot dt \otimes dt + dt \otimes \omega + \omega \otimes dt + \bar{g},$$

where

- $\circ t : \mathcal{M} = \mathbb{R} \times \overline{\mathcal{M}} \to \mathbb{R}$ is the projection on the first factor.
- \circ f, h are smooth functions on $\overline{\mathcal{M}}$.
- $\circ \omega$ is an 1-form on $\overline{\mathcal{M}}$.
- \circ \bar{g} is a Riemannian metric on $\bar{\mathcal{M}}$.

Let $\mathfrak{E} \subset \overline{\mathcal{M}}$ be the set where f < 0. Show that, for every $p \in \mathbb{R} \times \mathfrak{E}$, there exists a maximally extended **null** geodesic $\gamma : (a,b) \to \mathcal{M}$ for g with $\gamma(0) = p$ which does not escape $\mathbb{R} \times \mathfrak{E}$ (i.e. $\gamma(s) \in \mathbb{R} \times \mathfrak{E}$ for all $s \in (a,b)$.

6.3 Consider the manifold $\mathcal{M} = \mathbb{R} \times \mathbb{R}$ equipped with the Lorentzian metric

$$g_{AdS} = -(1+r^2)dt^2 + \frac{1}{1+r^2}dr^2$$

(this is known as the 1+1 dimensional Anti-de Sitter metric). Note that (\mathcal{M}, g) can be thought of as the universal Lorentzian cover of the (topological) cylinder $\mathcal{S} = \{-x^2 - y^2 + r^2 = +1\}$ in the pseudo-Euclidean space $(\mathbb{R}^{2+1}, \eta_{(2,1)})$, where $\eta_{(2,1)} = -dx^2 - dy^2 + dr^2$.

Differential Geometry IV: General Relativity

G. Moschidis16 Oct. 2024

- (a) Show that (\mathcal{M}, g_{AdS}) is timelike geodesically complete, i.e. that all timelike geodesics of g_{AdS} can be extended on the whole of \mathbb{R} .
- (b) Show that all timelike geodesics γ passing through (t,r) = (0,0) also pass through $(t,r) = (k\pi,0)$, $k \in \mathbb{Z}$. Show that there exists a point $p \in \mathcal{I}^+[(0,0)]$ such that (0,0) and p cannot be connected with a timelike geodesic.
- **6.4** Let (\mathcal{M}, g) be a smooth Lorentzian manifold and let $S \subset \mathcal{M}$ be a smooth *null* hypersurface. Let L be a non-zero vector field along S such that, for every $p \in S$, $L|_p \perp T_pS$.
 - (a) Show that L is tangent to S (i.e. $L|_p \in T_pS$ for all $p \in S$).
 - (b) Show that, for any two vector fields X, Y tangent to S, we have

$$g(\nabla_X L, Y) = g(\nabla_Y L, X).$$

(Hint: You might want to use the fact that, if V, W are two vector fields tangent to a submanifold $\mathcal{N} \subset \mathcal{M}$, then [V, W] is also tangent to \mathcal{N} .)

(c) Using the above formula, show that $\nabla_L L|_p \perp T_p S$ for all $p \in S$. Show that

$$\nabla_L L = \kappa L$$
 for some $\kappa : S \to \mathbb{R}$.

Deduce that the integral curves of L in S are (up to reparametrization) null geodesics. Infer that any null hypersurface of (\mathbb{R}^{1+n}, η) is a union of null lines.

(d) Assume, in addition, that there exists a Killing vector field V on (\mathcal{M}, g) such that V is collinear with L along S (such a null hypersurface is called a *Killing horizon*). By replacing L with V in the above arguments, we infer that

$$\nabla_V V|_S = \kappa V|_S.$$

Show that the function κ above is a *constant* along the null generators of S, i.e. $V(\kappa) = 0$. This is the *surface gravity* of the Killing horizon.

(e) Show that the hyperplane $H = \{x = t\}$ in (\mathbb{R}^{3+1}, η) (with the usual Cartesian coordinate system (t, x, y, z)) is a Killing horizon (and find the corresponding Killing vector field of (\mathbb{R}^{3+1}, η) . Can you compute its surface gravity?